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ON THE MOTION OF SPACE CHARGE IN A
DIELECTRIC MEDIUM
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A general relation is derived which describes the spatio-temporal behaviour of space charge in an ideal
dielectric medium. (Diffusion effects are neglected.) This result is used to determine the behaviour of a
parallel plate capacitor which contains space charges near its electrodes. Expressions are derived for the
variation with time of the potential difference between the plates following the removal of an applied
voltage and for the external current which flows when the plates are connected together. Symmetrical and
asymmetrical charge distributions are considered.

1. INTRODUCGTION

Although an ideal dielectric has no intrinsic electrical conductivity, a conduction current does in
fact flow when a steady potential difference is applied to a real dielectric specimen. Itis very usual

for this current to decay to a steady value from a higher initial value. If the applied voltage is

suddenly removed, electrical effects are observable for some time afterwards. For example, if the
specimen is left on open circuit, a residual potential difference is detectable which decays with
time; if the specimen is short circuited, a current is observable which flows in the opposite
direction to the earlier steady current and which decays with time. There are several variations
on these observations. For example, it has been observed (Yahagi, Kao & Calderwood 1966) that

SOCIETY

ifa specimen of n-hexaneisirradiated, the current builds up rather than decays to its steady value,

THE ROYAL A

while on switching off, the current which flows into a short circuit is in the same direction as the
original current; however, a short pulse of current in the opposite direction is sometimes detected
immediately the short circuit connexion is made.

Various explanations (Adamczewski 1969) have been put forward to account for this type of
behaviour, and many depend on the postulate that space charge exists in the dielectric medium.
This space charge is usually considered to be concentrated near the electrodes, while a steady
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218 J.H . CALDERWOOD AND B.K.P.SCAIFE

current is flowing; some time is required after the application of a voltage for an equilibrium
state to be reached, and the space charge is imagined to move in such a way after the applied
voltage is removed as to cause the subsequent observations of current and voltage.

Although these explanations are dependent upon space charge and its movement, usually only
a qualitative consideration is given to the action supposed to be taking place. The aim of the
present work is to consider the movement of space charges, and the effects to which they give rise,
in a more accurate and quantitative way.

To this end we study in the following sections a particularly simple model consisting of two
parallel conducting plates immersed in a dielectric medium and having space charge distributed
between them. We first derive, in § 2, a general equation for the spatial and temporal dependence
of electric charge density in a non-conducting fluid. For ease of mathematical manipulation
diffusion and dielectric relaxation effects are ignored. In § 3 we deal with the case of a sym-
metrical space charge distribution while in § 4 we consider a particular unsymmetrical distribu-
tion. The results obtained in §§ 3 and 4 are discussed in § 5.

2. GENERAL CONSIDERATIONS

Consider positive and negative charges, distributed with number densities nt(r, ) and n—(r, ¢),
in an insulating medium of absolute permittivity, e}. The time variations of these densities are
governed by the continuity equations

ont(r,t)]ot = G(r,t) — R(r,t) —divj*(r,¢), (2.1a)
on=(r,1)]0t = G(r,t) = R(r,t) —divj—(r,1). (2.1b)
The rates, per unit volume, at which charge pairs are generated and recombine are denoted by
G(r,t) and R(r,t) respectively. The particle current densities, j*(r, t) and j~(r, ¢) are related to the
particle velocities, v*(r, t) and v—(r, {), by the equations
jr=ntvt and j-=nwv. (2.2)
If the magnitude of the charge on each particle is ¢, then the net charge density, p = ¢(nt—n"), is
related to the total electric current density J = ¢(j* —j~), by the formula
oplot = —div J, (2.3)
obtained by subtracting equation (2.15) from equation (2.1a).
In general the charged particles will be caused to move by two influences, namely, the electric

potential gradient, — E (which is determined not just by p only, but also by whatever external
charge distributions there may be) and the density gradients grad 2+ and grad »—. In fact

Jjt=ptntE —dtgradnt
and j =—pnE—-d gradn-,
where u+ denotes the mobility and 4+ the diffusion coeflicient. Throughout this paper we shall
neglect diffusion effects. Consequently,

J=q(prnt+u—n)E, (2.4)

and this result with equation (2.3) yields the following expression for the time rate of change of the
charge density at a particular point r:

dp(r,t)jot = —qdiv{[utn*t +pn~] E}. (2.5)

1 SI units are used in this paper.
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MOTION OF SPACE CHARGE IN A DIELECTRIC MEDIUM 219

The net charge density, p, and the potential gradient, — E, are not independent because of the
relation divD = diveE = p,

and so equation (2.5) may be written
9plot = — gt +umn) (pfe) — q(E.V) (whn* + pmn). (2.6)

For later calculations it is useful to know the time variation of p as the point of observation
moves with a charge of a particular sign. If the operator 2+, defined by the equation

9+ = 0ot+ (v*+.V),
is applied to p we obtain the variation, with time, of the charge density in the vicinity of a moving
positive charge. Thus Drp = dplot+ V) (gt — qn-),
and with equation (2.6) we obtain

Dip = —(pp?le) —q(pt+p7) V. (n"E). (2.7)
In a region of space where there are charged particles of one sign only, positive say, this last
equation demands that DHp = — (pHp¥e).

Integration of this equation with respect to time leads to the result

p(r',0) = p(r, 0/ +ptp(r, 1) (¢ — D) Je]. (2.8)

In this equation the period (# —¢) is the time taken for a positive charge, initially at r at time ¢,
to move to the position r’. Equation (2.8) is of primary importance in our later considerations.

3. SYMMETRICAL CHARGE DISTRIBUTION

We shall consider here the time dependence of the spatial distribution of an electric space
charge placed between two parallel conducting plates immersed in an insulating fluid of absolute
permittivity, e.

We shall suppose that before time ¢ = 0 a charging current is flowing through the fluid from
left to right, which we shall deem to be the positive direction of current flow. This current flow is
maintained by the application of a potential difference between the plates; this potential difference
sets up a field in the positive direction, by creating a positive surface charge density on the left-
hand plate, and a negative surface charge density on the right-hand plate. We shall assume that,
possibly because of difficulty in the discharge of the charge carriers in the fluid when the plates
are reached, there is a build up of negative charge near the left-hand plate, and of positive charge
near the right-hand plate.

At time ¢ = 0, we shall suppose that there are space charges near each plate. These oppositely
charged space charges extend from the inner surface of each plate to a distance /; into the fluid.
The space charge density, p, has, initially, the same magnitude, p,, at every point in the intervals
—L<x<—(L-1,)and (L—1) < x < L, asillustrated in figure 1. The separation of the plates,
2L, is small enough to allow the neglect of edge effects. Furthermore, it is assumed that at time
zero there are also surface charge densities, + 0, and — o, on the inner surfaces of the left- and
right-hand plates, respectively. The initial values /,, p, and o, are not independent because we
shall require the left-hand plate to be at some positive potential, Vpq (0), relative to the right-hand
plate.

17-2
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MOTION OF SPACE CHARGE IN A DIELECTRIC MEDIUM 221

With appropriate values of /y, p, and o7, we shall study, in § 3(a), the temporal evolution of this
system after it has been disconnected from the external potential source and, in § 35, we shall deal
with the case when the plates are connected together immediately after time zero.

In the first case the quantity of experimental importance is the potential difference between the
plates, whereas in the second case it is the current flowing in the external connexion between the
plates that is of interest.

3 (a). Open-circuit case

The initial conditions of this problem are indicated in figures 14 and 14. In § 2 we have shown
that the spatio-temporal variation of the density of charge of one sign in an insulating fluid is
governed by the equation (with an appropriate change in notation for the one dimensional case)

P ) = p(x)[[L+pp(x,8) (U= 1)[e], (3(4) 1)

where (¢ —¢) is the time taken for a charged particle to move from x to x’. For simplicity we shall
assume that the positive and negative charges have the same value of mobility, x. It follows from
equation (3 (@) 1) that because the space charges are initially uniformly distributed they remain
so. Thus the space charge distributions maintain their rectangular shape and the charge density,

p(t), at time ¢, satisfies the equation
p(t) = pol (L +71), }
where Po=p(0) and vy = upyle. (3(2)2)

The potential difference between the left- and right-hand plates, Vpq(#), may be expressed in
terms of /, L, p and o by the equation ‘

Voo (t) = 2Lo — (2L—1) pl. (3(a) 3)

In order to determine the time dependence of Vpq () we must investigate the variation with time
of both o and . ‘

The rate of decrease of surface charge density on a particular plate must be equal to the current
density entering that plate. Therefore,

do/dt = — pE(L, 1) p(1), | (3(a) 4)
where E(L,t) = o/eis the electric field at the surface of the right-hand plate. Equation (3 (a) 2)
combined with equation (3 (a) 4) implies that

do/dt = —yo[(1+t),
and therefore o(t) = oy/(1+71). (3 (a) 5)

The rate of increase of [(¢) with time is determined by the velocity of the charges at the edge of the
charge cloud at R, namely uE(L —[,t). Consequently

difdt = pE(L—1,t) = (pu[e) [p(2) () — o (1)],
which, with equations (3 () 2) and (3 () 5) reduces to
difdt = y[I(t) — (a0/po) ) (1 +72),
and hence, setting s, = (07y/pyl,) we have
1(t) = L[1+ (1 —so) vt]- (3(a) 6)

The range of ¢ for which this equation is valid depends upon the value of 5,. For s, > 1, equation
(3 (a) 6) indicates that /() decreases with time which means that the points R’ and R diverge
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222 J . H CALDERWOOD AND B.K.P.SCAIFE

(figure 15). When ¢! = y(s,— 1), {(¢) is zero and the equation is not valid for greater values of ¢.
When s, = 1, [(#) is constant; therefore, only the magnitude of the density of the space charge
varies with time, whereas its spatial extension remains unchanged. From equation (3 (a) 3) we
conclude that for V4 (0) to be greater than zero s, > [1 — (/,/2L)] and so values of s, less than
unity are compatible with the requirement that Voo (0) > 0 (see figure 14). In this instance [(¢) is
an increasing function of time and the points R’ and R converge. When ¢ attains the value
(L—=1)/1lyy(1 —s4)], R” and R coincide and thereafter equation (3 (a) 6) is invalid. These remarks
may be summarized by saying that equation (3 () 6) holds under the following conditions:

< [Uyls=D] =Tey 5> 13
0<igoo, s5=1; } (8(a) 7)
0 <t <[(L=l)llyy(L=50)] =Te, 1—(lh/2L) <50 < L.
Combining equations (3 (a) 2), (3(a) 3), (3(a) 5) and (3 (a) 6) we obtain the relation
Foalt) = 5L fsy=[L+(1=s)) yl + BRD [+ (L-s) vl (3(@)8)

The range of values of ¢ and of s, for which this equation is valid are those indicated in (3 (@) 7).
If 5, > 1, the charge clouds contract into the plates and this process continues until a time

= [1/y(sy— 1)] when the space charges will have been annihilated. A charge density of amount
(09— Poly) = (5o — 1) /s, will remain on the plates after this time in view of the assumed infinite
intrinsic resistivity of the fluid. An immediate consequence is that after time 7% the potential
Vpq remains constant. If we set (s,— 1) y¢ equal to unity in equation (3 (a) 8) we find, as expected,
that elpq = 2Loy(sq— 1)/s,. Thus, when s, > 1, the potential between the plates falls steadily
until a time 7 and thereafter remains constant.

In the particular case when s, = 1, the potential gradient at and between the points R”and R
is zero for all times and hence (d//d¢) vanishes and / remains at its initial value. Setting s, = 1 in
equation (3 (a) 6) we obtain the simple result

Veq(t) = poli/(1+7t), (3(a) 9)
which means that the potential takes an infinite time to fall to zero in this case.

When 5, < 1 the situation is a little more complicated because equation (3 (@) 8) only holds up
to the time 7, = [(L—{,)/ly7(1 —s,)], when the charge clouds meet at the centre. Assuming that
the charges recombine at the junction of the two clouds, we must, therefore, use equation (3 (a) 3)
with [ set equal to L. Hence,

Fog (1) = 2LPobols— (L2L)]

A 0> (L=l lyy(1=s)] =Te, 1—(lyf2L) < 5, < 1). (3(a)10)

It is noteworthy that equation (3(«) 10) indicates that V5 (¢) can become negative when s, < 1 if

< (L/2ly). In addition, if 5, = (L/2,) we see that Vpq(t) vanishes for ¢ > Te. This means that at
the instant when the charge clouds meet at the centre, the potential difference between the
plates due to the space charge is exactly counterbalanced by that due to the charge on the plates.

The time dependence of ¥q(#) for various initial conditions having been determined, it is of
interest to discuss, briefly, the motion of the charges in the charge clouds.

When the total charge on one plate exceeds the total space charge adjacent to it, that is when
5o > 1 (seefigure 10), all parts of this space charge move towards the plate. However, the velocities
of the charged particles increase, in a linear fashion, between R and Q because of the linear
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decrease in potential gradient between these points. The same is true in the special case when
so = 1 but in this case the potential gradient is zero at R (and at R’) but it still decreases linearly
between R and Q. So it is that the width of the space charge cloud remains fixed whilst its magni-
tude falls with time.

The behaviour is more interesting when s, < 1 (figure 1a), because there is then a point D,
between R and Q ,within the space charge at which the potential gradient vanishes. In the region
between R and D the potential gradient is positive and between D and Q) it is negative; as a result
charges between R and D move towards the centre, with speed increasing linearly from D to R,
and those between D and Q) move towards the plate with speed increasing linearly from D to Q.

The position of D, distant w = OD from O, is determined by the equation

p(L—w) = 0.
Because of equations (3 (a) 2) and (3 (a) 3) it follows that

L—w = oy/p, = constant,
and hence D is stationary.
In order to display the variation of V5 (¢) with time for various conditions we introduce a new
variable u = [1/(1+vt)]. With the dimensionless quantity g(u) = [Vpo(t)/Vpq(0)], equation
(3 (a) 8) may be written in the form

a(u) = uso—{1+[(1—350) (1 —) [u]}+Fx{1 +[(1 - 5) (1 — ) [u]}?] ’

- so— 1+ &

(3(a) 11)

where « = (ly/L). This equation is valid under the following conditions (cf. equation (3 (a) 7)):

L2uz(s5—-1)sg (50> 1);
lzuz0 (s50=1); } (3(a) 12)
12uzk(l—-s)/(l—ksy), 1—3x<sy<]l.
When s, > 1 and u < (sy—1)/s, equation (3 () 11) must be replaced by
g(u) = (sp—1)/[s9—1+ 3«] = constant, (3(a) 13)

and when 1 -4k < 5y < land u < k(1 —s5,)/(1 —ks,), we must use the following relation derived
from equation (3(a) 10):

o) = (20T < k(1 -s) (1 ko). (3(a) 14)

It should be noted that in this equation g(#) can take on negative values.
Equations (3 (a) 11), (3 (a) 13) and (3 (a) 14) are shown in figure 2 for various values of s, and «.

3 (0). Short-circuit case

We now investigate the behaviour of the charge system when, at time zero, the plates are
brought to the same potential by means of an external connexion. In particular we shall be con-
cerned with the current that flows in the external circuit and in the variations in the charge and
field distributions.

The initial conditions in this case are the same as in the open-circuit case. Immediately on
short circuit the potential difference between the plates, Vpq, must fall to zero. The charge on a
plate does not, however, immediately fall to zero. Before the short circuit the magnitude of the
surface charge density on the plate is

0(0—) = eVpq(0=)/2L + poly[1 — (lo/2L)],
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which is just equation (3 (a) 3) rearranged. Just after the short circuit, a part, elpq(0—)/2L, of
this charge density is removed, but a portion

a(0+) = polo 1 = (o/2L)], (3(6) 1)

remains. This initial sudden removal of the part of the surface charge density is effected by an
external flow of current, that is, flow of positive charge from the left-hand plate to the right-hand
plate. This is in the reverse direction to that of a normal charging current. However, as we shall
see, the current flowing in the external circuit, thereafter, will be in the same direction as a normal
charging current.

The field distribution just following the short circuit is shown in figure 1 (¢). Near both plates
the field is positive, that is, in the direction of the original applied field; it decreases linearly away
from the plate and, after passing through zero at D’ and D it continues to decrease up to the
points R’ and R, between which it is constant and negative. The corresponding potential distribu-
tion is shown in figure 1 (¢).

With the particular initial charge distribution which we have chosen we know from our
discussion in § 2 that, if both types of charge have the same mobility,

p(E) = pol(1+7t), (3(0) 2)

and that the shape of the space-charge distributions remains the same. In contrast to the open-
circuit case the space charge clouds both tend to expand towards the centre, again without any
spatial variation of p between P and R’ and between R and Q) , no matter what value o(0-)/p,/,
may have, since there is a positive potential gradient at R’ and R. In fact,

dlfdt = —pE(L—1,8) = (u/2€) (pl*[L)
and with equation (3 (5) 2) we find that
difdt = (y[2L) &2/(1 + 1),
which means that I(t) = 2kLj[2—&ln (L+y8)] (¢t <Tm), (3(6) 3)

where the substitution, k = (/,/L), has been made and where 7, the time required for the charge
clouds to meet at O, is determined by the equation

[(Tw) = L,
that is, when VIm = {exp[2(1 —«)[k] -1} (3(b)4)

From figure 1(¢) it is clear that the potential gradient vanishes at the points D’ and D and
consequently the charges at these points will be stationary, but those between P and D’ and
between D and Q move towards the plates, whereas the remaining charges move toward the
centre. However, it is to be noted that in this case the points D’ and D are no longer stationary.
Denoting the distance OD by £, we have, as the condition for the potential gradient, — E(£,¢),

to vanish,
p(6) (L—E) = o(t).
From equation (3 () 1) we deduce that
E@) = L-1() {1 -[i(0)/2L]} (¢ <Tm), (3(6) 5)
which, in view of equation (3 (b) 3), is a never increasing function of time.

18 Vol. 26g9. A.
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The movement of D’ and D towards O means that some charges which initially moved towards
the centre decelerate sufficiently so that the point D passes them and they then begin to move
away from O and towards the plate. There is a point within the positive space charge to the left
hand of which no charges ever reverse their motion. The distance, y, of this point from O is easily
calculated from p(7m) because all the charge to the right of the point ¥ = L = £(7m) must always
have been moving towards the centre, O. Therefore

Poy = $Lp(Tm)
and so y=L/[2(1+yTw)] = $Lexp[ —2(1 —«)/«].

The charge clouds meet when / = L, at ¢ = Ty, and if recombination takes place immediately
on contact of opposite charges, equation (3 (5) 3) ceases to be valid after the time 7y, given by
equation (3 (b) 4). For values of ¢ > Ty, the shape of the charge distribution remains fixed.

The velocity of the point D towards O, —d£/di, satisfies the equation

— & = —dgfds = {1 [ L1} (dljd) (¢ < Trn).

Therefore, £’ (Tm) vanishes and, from equation (3 (4) 5),

5)
£=1L (Tn<t<o).

In order to calculate the current induced in the external connexion due to motion of charges
between the plates, we make use of the fact that a charge ¢ moving towards the right-hand plate
with speed v induces a flow of positive charge in the external connexion from the right plate to the
left plate of amount gv/2L (Shockley 1938). If, instead of a point charge, we consider a plane sheet
of charge of surface density X then the current density leaving the right-hand plate is (vX/2L).

We thus find that the contribution to the current density, dJ*, leaving the right-hand plate,
due to the motion of positive space charge between the planes x and x + dv, satisfies the equation

dJ+ = (u/2L) p(t) E(x,t) dx. (3(b) 6)
Because the electric field, E(x, ), varies linearly within the space charge and is zero at ¥ = + £,
it is convenient to introduce the variable # = ¥ —£. Then

eE(x,t) = p(t)y, —132L < 5 < I[1-(I|2L)],

and integration of equation (3 () 6) yields

2 rUL—(/2L)] 2/2
J+=/§‘§_L s /‘p 7 1= (D).

From the symmetry of the problem, J=, the contribution from the motion of the negative charge
cloud, must have the same value as J*+. The total current density, J(t), for any time after the short
circuit until ¢ = Ty, is given by the relation

2k2Lpyy 2«
O = sy = Kln(1+yt]}2: 2—K1n(1+'yt)}’ k= (WL) (0<t<Tm). (3(5)7)

As a simplification we define a quantity 7, by the equation
(L4vt) = exp[27(1—k)/k) (0<T< 1),

J(t) = (v__,OM[LI/i)T[((] _,’:))ng ——T)]exp[—47(.l—K)/K] (r < 1).

and hence
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MOTION OF SPACE CHARGE IN A DIELECTRIC MEDIUM 227

As one would expect J vanishes at ¢ = 7y, and for all later times when the flow of space charge
towards the centre is exactly counterbalanced by the flow toward the plates. This means that
although the external current vanishes after ¢ = Ty, internal charge motion still persists. The
space charge is removed by recombination at the plates and at the plane which divides the
system; it will take an infinite time for the space charge to be completely removed according to
equation (3(5) 2).

For ease of computation it is helpful to use a dimensionless quantity, z, which has the same time
dependence as J and which has unit value at 7 = 0. Thus,

2 = J()[J(0) = (I_T“)‘[‘??’_)}L(.E%]}KM] O<k<l;0<7<l).  (3()8)

The variation of z with 7 is illustrated in figure 3 for various values of «.

1.0

T

0 0.5 1.0
Figure 3. Short circuit. Relation between z(7) = J(t)/J(0) and 7 = [«/2(1— k)] In (14¢)
for symmetrical charge distribution. (See equation (3 () 8).)

4, UNSYMMETRICAL GHARGE DISTRIBUTION

So far we have assumed that a symmetrical charge distribution exists and that the mobilities of
the positive and negative charges are equal. In this section we shall show how it is possible to
generalize, somewhat, the results of the previous section.

We shall no longer assume that the space charge distribution is symmetrical, but we shall still
assume that the space charge density is spatially uniform in those regions where it exists. The
notation which will now be used differs from that used in § 3 only to be extent that certain symbols
will carry a superscript plus or minus sign as appropriate. The charge, field and potential distri-
butions are shown in figure 4.

In order to make progress it has been found necessary to make the following, not unreasonable,

assumptions.
18-2


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

J - H.CALDERWOOD AND B.K.P.SCAIFE

228

-

i\\\\

VA
\
___l_._
1
|
} -
IS

iI‘

S ;

/
ALV VAN

3/.1,0

3/0

,f
YA AAAANA N AN AN NN AR

MOI-110Ys (9) 1 < O fymoa-uado () {1 > % “moa-uado (v)
$osed TeoLnourASUN 10§ [eriuslod pue PR JLNd9[d 8IeYd JO UONNIYSI( “F TANOLL

AL LN AN AL AN N AN NV

AWAN

~

AN AV VNNV

NN

X t—

AN NN N NN

ALITOO0S

(9)
At— T —>a— 1] II!U
1 | | -
] -
1 | g
e
] =
“ |-
0dy g | “
s L
1 | | o
| | H@\»

L~
1 | ~ 2
AT =~ #
A _ RS g
s 1,7 C
/+1+ 7 / L
“1 -
A -
3ol - -

>
] g
L~
L~

_ Psm

PPN e g
g _ _ g
|~
. 2
1 | -
_ e
A [u o A w
“ L~
o g
“ -

g

X -—
140

SNOILDVSNVYL

Y TVAOY IH.L 1vDIHJOSOTIHd

MUnH\»

1 +Q\

3/0

AAVAVAVAVAVAVAY

AR AR R

[AVAVAVAVAVAY

e
j
I=)
/’
\\‘\\“\V‘\\\\Y

\:A.L.'_ rllnN —ar
] L~
4 | _ L
“1 L
A _ - 2
g | g
A5 Ju o' ¥ ar
-

X
g g
“ L
- x -—

ALIIOOS

40

SNOILDVSNVYL

q<>Om dH L 1vDIHdOSOTIHd


http://rsta.royalsocietypublishing.org/

) §
C

/

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

@ A

I §

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MOTION OF SPACE CHARGE IN A DIELECTRIC MEDIUM 229

(i) The total initial space charge between the plates is zero and therefore

pols = pols (4.1)

and hence 0§ =—05 =0

(if) The initial space charge densities are related by the further condition that

wps = wpg = ve. (4.2)
The time dependences of p*+ and of p~ are both of the same form as indicated by equation (3 (a) 2)
and so

pE() = pi[(L+70). (4.3)

4 (a). Open-circuit case
The rate of decrease of surface charge density on a particular plate must be equal to the current
density entering that plate; therefore,

dofdt = — B (£ L,1) p(s). (4(@1)
Because eE( + L,t) = |o(t)|, equations (3 (a) 2), (3 (a) 3) and (4 (a) 1) lead to the formula
|o£(0)] = ool (L+71) = o(2). (4(0)2)

By means of the same arguments which led to (3 (a) 6), we find that
dit/dt = —ptE(+ LT 1%,1)
= pE[px(t) () — o ()],
and, with So = Oolpdls = 0/Pols,
we obtain () = F[1+ (1 =sy) yt]- (4(a) 3)
Notice that this result together with (4.3) implies that
pr(O) (@) = p= (1) I-(2). (4(a) 4)

For s, > 1, I+(t) is a decreasing function of time and equation (4 (a) 3) is only valid in the range
0 <t <[1/(sg—1)7y] = Te. The potential Vpq(¢) is constant for ¢ > T, because after this time all
space charge has been removed from the dielectric. If s, = 1, then both I+ and /- are constant.
When s, < 1, [+ increase with time and equation (4 (@) 3) is then valid until a time 7, when the
charge clouds meet, that is when I+(Tg) +{~(T,) = 2L. As a consequence

To =[2L— (I + 1)1/l +15) v (1 =s0)],
and I+(Tg) = 20FL|(If +1p).
Equation (4 (a) 3) is, therefore, valid under the following conditions:

0<i<[Uy(so=1)]1=Te, o> 1;
0<tgoo, s5=1; (4 (a) 5)
0<t< Ty, [1=(lf+105)/4L] <59 < 1.

The potential difference between the plates, Vpq(2), satisfies the relation

Voglt) = 2Lo —[2L— (I++17)[2] pHi, (4(a) 6)
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which may easily be obtained by calculating the total area beneath the plot of E against x in
figure 4 (a) or 4 (). The lower bound for s, is determined from equation (4 (a) 6) by the condition
that Vpq(0) > 0.
Substituting for p*(¢), I+(¢) and o (¢) in equation (4 (a) 6) from equations (4.3), (4(a) 3) and
(4 (a) 2), we obtain
.
Toa(t) = 1208

-t 0=+ S neagp). @@

This equation is valid for the range of values of ¢ and s, quoted in (4 (a) 5).

If we assume that recombination takes place at the junction between the two clouds of space
charge, there is no overflow of charge of one sign into the region occupied by charge of the opposite
sign because the current densities J;” and J; , on either side of the junction, are equal. This may be

proved as follows: Ji = prut(pHl+ + pI-) 2,

and Ji = pu(ptlt+p7i7) [ 2,

7

but, from equations (4.2) and (4.3), ptut = p~u~ and hence J;t = J; . A corollary to this result
is that the position of the junction of the space charges remains fixed.

The variation of Vpq(#) described by equation (4 (@) 7) is essentially the same as for the sym-
metrical case. We notice that for s, = 1,

Voo (t) = pd by (I +15)[[2(1 + 1)), (4(a)8)
for all values of ¢, and that when s, < 1,

2Lpg Iy
14yt

Fhgll) = [so— LIl +15)] (4(a)9)

for ¢ > T. In this last case the condition 1 — (I +15)/4L < s, < 1 must be satisfied to ensure that
Vpq(0) is positive. Just as in the symmetrical case Vpq () can take on negative values.

The comments at the end of § 3 (a) concerning the motion of the space charges apply with
appropriate, but obvious, changes.

4(b). Short-circuit case

The considerations in § 3 () will now be repeated, in outline, for the unsymmetrical charge
distribution. The charge density on one of the plates, o-(0—), just preceding short circuit, satisfies
the equation (see figure 4 (a) or 4 (b))

0(0-) = [eVpq(0—)/2L] +[1 — (& +L5) [4L] pi'lg -
On short circuit the charge density falls to a value o(0+) given by
o(0+) = pt L — (i +15) 4L
It then follows that dit/dt = (pE[4Le) [p*(I+)2+p=(17)?], (4(b) 1)
and hence ) =1l = (utlp) [1-() = 5]
In view of equations (4.1) and (4.2) this means that

L) = (1), (4(2)2)
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and so equation (4 (b) 1) may be integrated to obtain the result

1(t) = g [{1 = [(w* +p7) [4p L] i In (L4 y8)}. (4(2) 3)

It is clear that both /+(¢) and [~(¢) are increasing functions of time as was {(¢) in the symmetrical
case. Equation (4 (b) 3) ceases to be valid when the space charges meet, that is when /* 4/~ = 2L.
From equations (4 (b) 2) and (4 (b) 3) the time of meeting, 77, is obtained by solving the equation

2Lpt i
(wr+p) A= +p) I [4p L] In (1+y8)}
Therefore, (L4+yTy) =exp[—2+4Lp*/(pt+p) I, (4(b) 4)

As before, if we introduce a dimensionless quantity 7’ defined by the relation
(14v2) = exp[27'(1 —-«")[K],
where k' = (pt+p) I |12Lut,
then B(l) = 2602 =k In (L4y)] (< T (4(5) 5)

Furthermore, one can prove that the current density in the external circuit, J(¢), is given by the
formula

[4&"2p5 ypt ('t +p7)] 2«
70 = (e (e 2 oo

which is of the same form as equation (3 () 7). It will be seen from equation (4 (b) 6) that J(¢)
vanishes for ¢ = Ty, and it may be shown that J(¢) is zero for all later times.

The essential features of the motion of the space charge in the symmetrical case, discussed in
§3(b), are maintained in this case also. Thus the curves illustrated in figures 2 and 3 apply to a
particular asymmetrical charge distribution as well as to the symmetrical distribution discussed
in §3.

5. DiscussioN

The foregoing analysis is based upon a very simple physical model. At best it is only likely to be
an approximate representation of the true physical situation. Such factors as diffusion, dielectric
relaxation, intrinsic conduction, bulk movement of the fluid, and effects peculiar to the electrode/
fluid interface have been ignored. Nevertheless, the simple model enables quite complicated
transient voltage and current behaviour to be predicted, including behaviour resembling that
observed experimentally. Quite sophisticated models are sometimes postulated to account for
such observations, but the possibility of accounting for them by using a simple model should be
considered.

For example it may be predicted, using our simple model, that after short circuit of a dielectric
specimen the current flow will be in the same direction as current flow before the short
circuit is effected, apart from a sudden pulse of current in the opposite direction immediately on
short circuit. This is in agreement with the observations on irradiated n-hexane (Yahagi ¢t al.
1966). It is plausible to suggest that under irradiation the space charge, like the steady-state
current, is very considerably greater than in the non-irradiated case. This being so, it may well be
that our simple model is a reasonably good representation of the actual situation obtaining. On
the other hand, this model is notlikely to be an acceptable representation of the situation obtaining
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in the non-irradiated case, because the direction of current flow predicted after short circuit is
opposite to that actually observed. Some other mechanism must be postulated, which may also
be operative in the irradiated case when it is swamped by the greater space charge effect.

We wish to thank Professor K. C. Kao, Professor K. Yahagi and Dr J.G.Byrne for helpful
discussions.

)

=

REFERENCES

y

~_
o - Adamczewski, I. 1969 Ionization, conductivity and breakdown in dielectric liguids. London: Taylor and Francis.
< Shockley, W. 1938 J. appl. Phys. 9, 635.

> E Yahagi, K., Kao, K. C. & Calderwood, J. H. 1966 J. appl. Phys. 37, 4289.

e

E O

=w

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

